Segmentation of lidar data is a task that provides rich, point-wise information about the environment of robots or autonomous vehicles. Currently best performing neural networks for lidar segmentation are fine-tuned to specific datasets. Switching the lidar sensor without retraining on a big set of annotated data from the new sensor creates a domain shift, which causes the network performance to drop drastically. In this work we propose a new method for lidar domain adaption, in which we use annotated panoptic lidar datasets and recreate the recorded scenes in the structure of a different lidar sensor. We narrow the domain gap to the target data by recreating panoptic data from one domain in another and mixing the generated data with parts of (pseudo) labeled target domain data. Our method improves the nuScenes to SemanticKITTI unsupervised domain adaptation performance by 15.2 mean Intersection over Union points (mIoU) and by 48.3 mIoU in our semi-supervised approach. We demonstrate a similar improvement for the SemanticKITTI to nuScenes domain adaptation by 21.8 mIoU and 51.5 mIoU, respectively. We compare our method with two state of the art approaches for semantic lidar segmentation domain adaptation with a significant improvement for unsupervised and semi-supervised domain adaptation. Furthermore we successfully apply our proposed method to two entirely unlabeled datasets of two state of the art lidar sensors Velodyne Alpha Prime and InnovizTwo, and train well performing semantic segmentation networks for both.
translated by 谷歌翻译
为了训练一个表现出色的神经网络进行语义细分,至关重要的是,拥有一个具有可用地面真相的大数据集以供网络概括为看不见的数据。在本文中,我们提出了新颖的点云增强方法,以人为地使数据集多样化。我们以传感器为中心的方法保持数据结构与LIDAR传感器功能一致。由于这些新方法,我们能够通过高价值实例丰富低价值数据,并创建全新的场景。我们使用公共Semantickitti数据集验证了在多个神经网络上的方法,并证明与各自的基线相比,所有网络都会有所改善。此外,我们表明我们的方法能够使用非常小的数据集,节省注释时间,培训时间和相关成本。
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
Network Intrusion and Detection Systems (NIDS) are essential for malicious traffic and cyberattack detection in modern networks. Artificial intelligence-based NIDS are powerful tools that can learn complex data correlations for accurate attack prediction. Graph Neural Networks (GNNs) provide an opportunity to analyze network topology along with flow features which makes them particularly suitable for NIDS applications. However, successful application of such tool requires large amounts of carefully collected and labeled data for training and testing. In this paper we inspect different versions of ToN-IoT dataset and point out inconsistencies in some versions. We filter the full version of ToN-IoT and present a new version labeled ToN-IoT-R. To ensure generalization we propose a new standardized and compact set of flow features which are derived solely from NetFlowv5-compatible data. We separate numeric data and flags into different categories and propose a new dataset-agnostic normalization approach for numeric features. This allows us to preserve meaning of flow flags and we propose to conduct targeted analysis based on, for instance, network protocols. For flow classification we use E-GraphSage algorithm with modified node initialization technique that allows us to add node degree to node features. We achieve high classification accuracy on ToN-IoT-R and compare it with previously published results for ToN-IoT, NF-ToN-IoT, and NF-ToN-IoT-v2. We highlight the importance of careful data collection and labeling and appropriate data preprocessing choice and conclude that the proposed set of features is more applicable for real NIDS due to being less demanding to traffic monitoring equipment while preserving high flow classification accuracy.
translated by 谷歌翻译
Heuristic search algorithms, e.g. A*, are the commonly used tools for pathfinding on grids, i.e. graphs of regular structure that are widely employed to represent environments in robotics, video games etc. Instance-independent heuristics for grid graphs, e.g. Manhattan distance, do not take the obstacles into account and, thus, the search led by such heuristics performs poorly in the obstacle-rich environments. To this end, we suggest learning the instance-dependent heuristic proxies that are supposed to notably increase the efficiency of the search. The first heuristic proxy we suggest to learn is the correction factor, i.e. the ratio between the instance independent cost-to-go estimate and the perfect one (computed offline at the training phase). Unlike learning the absolute values of the cost-to-go heuristic function, which was known before, when learning the correction factor the knowledge of the instance-independent heuristic is utilized. The second heuristic proxy is the path probability, which indicates how likely the grid cell is lying on the shortest path. This heuristic can be utilized in the Focal Search framework as the secondary heuristic, allowing us to preserve the guarantees on the bounded sub-optimality of the solution. We learn both suggested heuristics in a supervised fashion with the state-of-the-art neural networks containing attention blocks (transformers). We conduct a thorough empirical evaluation on a comprehensive dataset of planning tasks, showing that the suggested techniques i) reduce the computational effort of the A* up to a factor of $4$x while producing the solutions, which costs exceed the costs of the optimal solutions by less than $0.3$% on average; ii) outperform the competitors, which include the conventional techniques from the heuristic search, i.e. weighted A*, as well as the state-of-the-art learnable planners.
translated by 谷歌翻译
Self-supervised learning (SSL) aims to produce useful feature representations without access to any human-labeled data annotations. Due to the success of recent SSL methods based on contrastive learning, such as SimCLR, this problem has gained popularity. Most current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective and then discard the learned projection head after training. This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training? In this work, we first perform a systematic study on the behavior of SSL training focusing on the role of the projection head layers. By formulating the projection head as a parametric component for the InfoNCE objective rather than a part of the network, we present an alternative optimization scheme for training contrastive learning based SSL frameworks. Our experimental study on multiple image classification datasets demonstrates the effectiveness of the proposed approach over alternatives in the SSL literature.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Few-shot methods for accurate modeling under sparse label-settings have improved significantly. However, the applications of few-shot modeling in natural language processing remain solely in the field of document classification. With recent performance improvements, supervised few-shot methods, combined with a simple topic extraction method pose a significant challenge to unsupervised topic modeling methods. Our research shows that supervised few-shot learning, combined with a simple topic extraction method, can outperform unsupervised topic modeling techniques in terms of generating coherent topics, even when only a few labeled documents per class are used.
translated by 谷歌翻译
This paper investigates Support Vector Regression (SVR) in the context of the fundamental risk quadrangle paradigm. It is shown that both formulations of SVR, $\varepsilon$-SVR and $\nu$-SVR, correspond to the minimization of equivalent regular error measures (Vapnik error and superquantile (CVaR) norm, respectively) with a regularization penalty. These error measures, in turn, give rise to corresponding risk quadrangles. Additionally, the technique used for the construction of quadrangles serves as a powerful tool in proving the equivalence between $\varepsilon$-SVR and $\nu$-SVR. By constructing the fundamental risk quadrangle, which corresponds to SVR, we show that SVR is the asymptotically unbiased estimator of the average of two symmetric conditional quantiles. Additionally, SVR is formulated as a regular deviation minimization problem with a regularization penalty by invoking Error Shaping Decomposition of Regression. Finally, the dual formulation of SVR in the risk quadrangle framework is derived.
translated by 谷歌翻译
The identification of material parameters occurring in constitutive models has a wide range of applications in practice. One of these applications is the monitoring and assessment of the actual condition of infrastructure buildings, as the material parameters directly reflect the resistance of the structures to external impacts. Physics-informed neural networks (PINNs) have recently emerged as a suitable method for solving inverse problems. The advantages of this method are a straightforward inclusion of observation data. Unlike grid-based methods, such as the finite element method updating (FEMU) approach, no computational grid and no interpolation of the data is required. In the current work, we aim to further develop PINNs towards the calibration of the linear-elastic constitutive model from full-field displacement and global force data in a realistic regime. We show that normalization and conditioning of the optimization problem play a crucial role in this process. Therefore, among others, we identify the material parameters for initial estimates and balance the individual terms in the loss function. In order to reduce the dependence of the identified material parameters on local errors in the displacement approximation, we base the identification not on the stress boundary conditions but instead on the global balance of internal and external work. In addition, we found that we get a better posed inverse problem if we reformulate it in terms of bulk and shear modulus instead of Young's modulus and Poisson's ratio. We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data in a realistic regime. Since displacement data measured by, e.g., a digital image correlation (DIC) system is noisy, we additionally investigate the robustness of the method to different levels of noise.
translated by 谷歌翻译